
Feature Selection Bias in Classification of High

Dimensional Data

John H Maindonald

November 1, 2024

Abstract

This vignette reproduces modified versions the calculations and the
figures that appear in Section 12.3 of: Maindonald, J.H. and Braun, W.J.
Data Analysis and Graphics Using R. 2nd edition 2007; 3rd edition 2010,
Cambridge University Press. In order to reduce execution time, there are
fewer folds for cross-validation and fewer simulations.

1 What groups are of interest?

The data frame golubInfo has details of the classifying factors for the 72
columns of the data set golub. The 72 observations are classified into one
of the three cancer types ALL B-type (coded allB), ALL T-type (coded allT)
and AML (coded aml). The two classifications that will be investigated are
(1) according to tissue type and sex, given by the factor tissue.mf, and (2)
according to cancer type (ALL B-type, ALL T-type, AML), given by the factor
cancer.

library(hddplot)

data(golubInfo)

with(golubInfo, table(cancer, tissue.mf))

tissue.mf

cancer BM:NA BM:f BM:m PB:NA PB:f PB:m

allB 4 19 10 2 1 2

allT 0 0 8 0 0 1

aml 16 2 3 1 1 2

For the classification according to tissue type and sex (tissue.mf), restric-
tion to the allB leukemia type and to patients whose sex is known gives a
relatively homogeneous set of data. We will define a factor tissue.mfB that
classifies the allB subset of the data for which the sex of the patient is known,
and for which at least two samples are available. The single allB observation
that is PB:f will be omitted.

1

The following calculations separate out the allB subset (GolubB) of the data,
and derive the factor tissue.mfB whose levels are BM:f, BM:m and PB:m:

attach(golubInfo)

Identify allB samples for that are BM:f or BM:m or PB:m

subsetB <- cancer=="allB" & tissue.mf%in%c("BM:f","BM:m","PB:m")

Form vector that identifies these as BM:f or BM:m or PB:m

tissue.mfB <- tissue.mf[subsetB, drop=TRUE]

Separate off the relevant columns of the matrix Golub

data(Golub) # NB: variables (rows) by cases (columns)

GolubB <- Golub[,subsetB]

detach(golubInfo)

Distributions across features for a selection of observations

X1 X4 X7 X10 X13 X16 X19

−
50

00
0

0
50

00
0

10
00

00

X1 X5 X9 X14 X19 X24 X29

−
20

00
0

20
00

40
00

60
00

Figure 1: Boxplots of distributions across features for a selection of observations

Display distributions for the first 20 observations

boxplot(data.frame(GolubB[, 1:20])) # First 20 columns (observations)

Random selection of 20 rows (features)

boxplot(data.frame(GolubB[sample(1:7129, 20),]))

2

2 Linear Discriminant Analysis, following vari-
able selection

Flawed graphs

Panel A in Figure 2 shows a convincing separation between groups, based on
the use of linear discriminant analysis with the 15 features that best separate
the groups. Panel B, which uses random normal data to repeat the calculations
for Panel A, highlights the flaws in the methodology.

0 5 10 15

−
5

0
5

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n
2

 Best features
BM:f BM:m PB:m PB:f()

0 5 10

−
5

0
5

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n
2

 Best 15 features
Gp1 Gp2 Gp3 Gp4()

Figure 2: Panel B, with random normal data, illustrates the potential for getting
spurious results with the methodology used for Panel A.

Uses orderFeatures() (hddplot); see below

ord15 <- orderFeatures(GolubB, cl=tissue.mfB)[1:15]

Panel A

dfB.ord <- data.frame(t(GolubB[ord15,]))

Calculations for the left panel

Transpose to observations by features

dfB15 <- data.frame(t(GolubB[ord15,]))

library(MASS)

dfB15.lda <- lda(dfB15, grouping=tissue.mfB)

scores <- predict(dfB15.lda, dimen=2)$x

Scores for the single PB:f observation

df.PBf <- with(golubInfo,

data.frame(t(Golub[ord15, tissue.mf=="PB:f" & cancer=="allB",

drop=FALSE])))

scores.PBf <- predict(dfB15.lda, newdata=df.PBf, dimen=2)$x

For comparison: simulated scores

3

simscores <- simulateScores(nrow=7129, cl=rep(1:3, c(19,10,2)),

cl.other=4, nfeatures=15, seed=41)

Returns list elements: scores, cl, scores.other & cl.other

opar <- par(mar=c(4,4,2.6,.1))

Warning! The plot that now follows may be misleading!

Use scoreplot(), from the hddplot package

scoreplot(list(scores=scores, cl=tissue.mfB, other=scores.PBf,

cl.other="PB:f"))

Panel B: Repeat plot, now with random normal data

scoreplot(simscores)

par(opar)

3 Distributional extremes

Calculated F-statistics (Figure 3) will be compared with the permutation dis-
tribution and with the theoretical F-distribution, but limiting attention to just
the first two classes. At least in version 2.56.0 of multtest, calculations fail if
the minimum class size is 1 or 2, as for PB:m. Code is:

In the following, B is too small for the simulation to give a

good indication of behavior in the extreme tail.

library(multtest, quietly=TRUE)

GolubB2 <- GolubB[,tissue.mfB!="PB:m"]

cl.mfB2 <- (unclass(tissue.mfB)-1)[tissue.mfB!="PB:m"]

GolubB.maxT <- mt.maxT(GolubB2, cl.mfB2, test="f", B=1000)

Compare calculated F-statistics with permutation distribution

qqthin(qf(1-GolubB.maxT$rawp, 2, 28), GolubB.maxT$teststat,

print.thinning.details = FALSE)

Compare calculated F-statistics with theoretical F-distribution

qqthin(qf(ppoints(7129), 2, 28), GolubB.maxT$teststat,

print.thinning.details = FALSE)

The theoretical F-distribution gives estimates of quantiles

that are too small

NB also the comparison between the permutation distribution

and the theoretical F:

qqthin(qf(ppoints(7129), 2, 28), qf(1-GolubB.maxT$rawp, 2, 28),

print.thinning.details = FALSE)

qqthin() is a version of qqplot() that thins out points where

overlap is substantial, thus giving smaller graphics files.

4

0 2 4 6 8

0
20

40
60

80
10

0

qf(1 − GolubB.maxT$rawp, 2, 28)

G
ol

ub
B

.m
ax

T
$t

es
ts

ta
t

0 2 4 6 8 10 14

0
20

40
60

80
10

0

qf(ppoints(7129), 2, 28)

G
ol

ub
B

.m
ax

T
$t

es
ts

ta
t

0 2 4 6 8 10 14

0
2

4
6

8

qf(ppoints(7129), 2, 28)

qf
(1

 −
 G

ol
ub

B
.m

ax
T

$r
aw

p,
 2

, 2
8)

Figure 3: Compare calculated F-statistics with the permutation distribution
and with the theoretical F. The theoretical F makes unrealistic normality and
independence assumptions.

In the following, B is too small for the simulation to give a

good indication of behavior in the extreme tail.

library(multtest, quietly=TRUE)

GolubB2 <- GolubB[,tissue.mfB!="PB:m"]

cl.mfB2 <- (unclass(tissue.mfB)-1)[tissue.mfB!="PB:m"]

GolubB.maxT <- mt.maxT(GolubB2, cl.mfB2, test="f", B=1000)

Compare calculated F-statistics with permutation distribution

qqthin(qf(1-GolubB.maxT$rawp, 2, 28), GolubB.maxT$teststat,

print.thinning.details = FALSE)

Compare calculated F-statistics with theoretical F-distribution

qqthin(qf(ppoints(7129), 2, 28), GolubB.maxT$teststat,

print.thinning.details = FALSE)

The theoretical F-distribution gives estimates of quantiles

that are too small

NB also the comparison between the permutation distribution

and the theoretical F:

qqthin(qf(ppoints(7129), 2, 28), qf(1-GolubB.maxT$rawp, 2, 28),

print.thinning.details = FALSE)

qqthin() is a version of qqplot() that thins out points where

overlap is substantial, thus giving smaller graphics files.

4 Discriminant Analysis – Training/Test

Selection of features that discriminate

ss 12.3.3: Accuracies and Scores for test data

5

Golub.BM <- with(golubInfo, Golub[, BM.PB=="BM"])

cancer.BM <- with(golubInfo, cancer[BM.PB=="BM"])

Now split each of the cancer.BM categories between two subsets

Uses divideUp(), from hddplot

gp.id <- divideUp(cancer.BM, nset=2, seed=29)

Set seed to allow exact reproduction of the results below

table(gp.id, cancer.BM)

cancer.BM

gp.id allB allT aml

1 17 4 10

2 16 4 11

accboth <- accTrainTest(x = Golub.BM, cl = cancer.BM,

traintest=gp.id, , print.progress=FALSE)

Training/test split Best accuracy, less 1SD

I (training) / II (test) 0.89 (14 features)

II (training) / I (test) 0.92 (10 features)

Training/test split Best accuracy

I (training) / II (test) 0.94 (20 features)

II (training) / I (test) 0.97 (17 features)

Code for plotting the figures is:

opar <- par(mar=c(4,4,3.1,.1))

Use function plotTrainTest() from hddplot

plotTrainTest(x=Golub.BM, nfeatures=c(14,10), cl=cancer.BM, traintest=gp.id)

par(opar)

Now compare the choice of features between I/II and II/I:

rbind(accboth$sub1.2[1:20],accboth$sub2.1[1:20])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 4050 2794 6510 6696 4342 5542 4357 5543 1207 4584 6236 1429

[2,] 6606 4342 6510 3594 4050 6236 1694 1207 1268 4847 5542 2061

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

[1,] 6575 2833 4750 2335 1704 4882 6225 3544

[2,] 5543 4055 4375 1144 379 6696 4196 229

match(accboth$sub1.2[1:20],accboth$sub2.1[1:20])

[1] 5 NA 3 18 2 11 NA 13 8 NA 6 NA NA NA NA NA NA NA NA NA

6

0 20 40 60

−
30

−
10

0
10

20
30

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n
2

 Best 14 features
allB allT aml

A: I/II (train with I, scores are for II)

0 10 20 30 40 50

−
30

−
20

−
10

0
10

20
30

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n
2

 Best 10 features
allB allT aml

B: II/I (train with II, scores are for I)

Figure 4: Panel A plots scores for the set II data, using set I for training (the
I/II split), as described in the text. Panel B plots the scores for the set I data
when the roles of the two sets were reversed, i.e., the split was II/I.

4.1 Cross-validation based optimum choice of features

With the number of selected features varying from 1 to 25, three different ac-
curacy measures will be compared, for classification of the B-cell data. The
plots highlight the serious bias in measures that are to an extent internal to the
training data.

Cross-validation to determine the optimum number of features

Accuracy measure will be: tissue.mfB.cv£acc.cv

tissue.mfB.cv <- cvdisc(GolubB, cl=tissue.mfB, nfeatures=1:23,

nfold=c(5,1), print.progress=FALSE)

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.77 (3 features) 0.84 (7 features)

5-fold CV (x1)

Defective measures will be in acc.resub (resubstitution)

and acc.sel1 (select features prior to cross-validation)

tissue.mfB.badcv <- defectiveCVdisc(GolubB, cl=tissue.mfB,

foldids=tissue.mfB.cv$folds,

nfeatures=1:23, nfold=c(5,1),

print.progress=FALSE)

NB: Warning messages have been omitted

7

Calculations for random normal data:

set.seed(43)

rGolubB <- matrix(rnorm(prod(dim(GolubB))), nrow=dim(GolubB)[1])

rtissue.mfB.cv <- cvdisc(rGolubB, cl=tissue.mfB, nfeatures=1:23,

nfold=c(5,1), print.progress=FALSE)

[1] "Input rows (features) are not named. Names"

[1] "1:7129 will be assigned."

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.46 (1 features) 0.55 (1 features)

rtissue.mfB.badcv <- defectiveCVdisc(rGolubB, cl=tissue.mfB,

nfeatures=1:23, nfold=c(5,1),

foldids=rtissue.mfB.cv$folds,

print.progress=FALSE)

[1] "Input rows (features) are not named. Names"

[1] "1:7129 will be assigned."

This function will be used for the plots

plot.acc <- function(cv=cv1, badcv=badcv1, nseq=NULL, badnseq=NULL,

title="", ylab="Predictive accuracy",

add.legend=TRUE){
maxg <- min(c(length(badcv$acc.resub), length(cv$acc.cv)))

if(is.null(nseq))nseq <- 1:maxg

plot(nseq, badcv$acc.resub[1:maxg], ylim=c(0,1), type="n",

yaxs="i", xlab="Number of features selected", ylab=ylab)

par(xpd=T)

points(nseq, badcv$acc.resub[1:maxg], col=2, type="b", lty=2,

pch=0, cex=0.8)

par(xpd=FALSE)

points(nseq, badcv$acc.sel1[1:maxg], col="gray40", pch=3, cex=0.8)

lines(lowess(nseq, badcv$acc.sel1[1:maxg], f=.325, iter=0),

col="gray40", lty=2)

points(nseq, cv$acc.cv[1:maxg], col="blue", pch=1, cex=0.8)

lines(lowess(nseq, cv$acc.cv[1:maxg], f=.325, iter=0), col="blue",

lwd=2)

xy <- par()$usr[c(1,3)]

if(add.legend)

legend(xy[1], xy[2], xjust=0, yjust=0,

legend=c("Training set 'accuracy'",

"Defective cross-validation",

"Cross-validation - select at each fold"),

8

lty=c(1,2,1), lwd=c(1,1,2), pch=c(0,3,1),

col=c("red","gray40","blue"), cex=0.875)

mtext(side=3,line=0.35, title, adj=0)

}

plot.acc(tissue.mfB.cv, tissue.mfB.badcv,

title="A: Golub data (as for Figure 12.9)")

plot.acc(rtissue.mfB.cv, rtissue.mfB.badcv, ylab="",

title="B: Random data", add.legend=FALSE)

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of features selected

P
re

di
ct

iv
e

ac
cu

ra
cy

Training set 'accuracy'
Defective cross−validation
Cross−validation − select at each fold

A: Golub data (as for Figure 12.9)

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of features selected

B: Random data

Figure 5: Comparison of different accuracy measures, in the development of a
discriminant rule for the classification, into the categories BM:f, BM:m and PB:m,
of the B-cell ALL data for which gender is known.

Figure 5 compares three different accuracy measures, for the classification
of the B-cell data. The training data measure (□) is a severely biased measure.
Cross-validation, but with features selected using all the data (+), is less severely
biased. An acceptable measure of predictive accuracy (◦) requires re-selection
of features at each fold of the cross-validation. The right panel shows the per-
formance of each of these measures when the expression values were replaced
by random data.

Which features?

Which features?

genelist <- matrix(tissue.mfB.cv$genelist[1:3, ,], nrow=3)

tab <- table(genelist, row(genelist))

ord <- order(tab[,1], tab[,2], decreasing=TRUE)

9

tab[ord,]

genelist 1 2 3

M58459_at 3 0 1

L08666_at 1 0 0

U29195_at 1 0 0

U91327_at 0 2 0

U49395_at 0 1 0

X00437_s_at 0 1 0

X54870_at 0 1 0

X62654_rna1_at 0 0 3

X82494_at 0 0 1

5 Cross-validation: bone marrow (BM) samples

Cross-validation: bone marrow ({BM}) samples only

BMonly.cv <- cvdisc(Golub.BM, cl=cancer.BM, nfeatures=1:25,

nfold=c(5,1), print.progress=FALSE)

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.87 (12 features) 0.9 (16 features)

tissue.mfB.scores <-

cvscores(cvlist = tissue.mfB.cv, nfeatures = 3, cl.other = NULL,

print.progress=FALSE)

1:2:3:4:5

BMonly.scores <- cvscores(cvlist=BMonly.cv, nfeatures=19,

cl.other=NULL, print.progress=FALSE)

1:2:3:4:5

Code is:

opar <- par(mar=c(4,4,2.6,.1))

Panel A: Uses tissue.mfB.acc from above

scoreplot(scorelist = tissue.mfB.scores, cl.circle=NULL,

prefix="B-cell subset -")

10

−4 −2 0 2 4

−
4

−
2

0
2

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n
2

B−cell subset − Best 3 features
BM:f BM:m PB:m

−5 0 5 10 15 20 25 30

−
15

−
10

−
5

0
5

10
15

Discriminant function 1

D
is

cr
im

in
an

t f
un

ct
io

n
2

B: BM samples − Best 19 features
allB allT aml

BM:f
BM:m

Figure 6: These plots of projections of linear discriminant analysis scores are de-
signed to fairly reflect the performance of a linear discriminant in distinguishing
between known groups in the data. The two panels relate to different subsets
of the Golub data, with different groupings in the two cases. In panel B, for
the classification of the 62 bone marrow (BM) samples into allB, allT, and aml,
points where the sex is known are identified as male or female.

Panel B; classify bone marrow samples a/c cancer type.

scoreplot(scorelist=BMonly.scores, cl.circle=tissue.mfB,

circle=tissue.mfB%in%c("BM:f","BM:m"),

params=list(circle=list(col=c("cyan","gray"))),

prefix="B: BM samples -")

par(opar)

11

